摘要:為了減小黏性流體對浮子流量傳感器測量的影響,本文采用優(yōu)化浮子結(jié)構(gòu)的方法來設(shè)計黏性不敏感浮子傳感器,運用計算流體力學(xué)(CFD)的方法對測量黏性介質(zhì)的浮子流量傳感器進行了數(shù)值仿真,在仿真分析的基礎(chǔ)上,,發(fā)現(xiàn)流體在邊界層分離產(chǎn)生的渦旋流場可以減小黏性對浮子流量傳感器測量的影響,研究分析了利用渦旋場減小流體黏性影響的機理與減黏浮子結(jié)構(gòu)的特征;同時設(shè)計制造了利用渦旋效應(yīng)實現(xiàn)減黏的浮子流量傳感器,利用黏性物理實驗對減黏浮子的減黏效果進行了驗證,具有減黏效果的浮子流量傳感器在1-495mPa.s的黏性范圍內(nèi),介質(zhì)黏性所引起的測量誤差可控制在2.9%以內(nèi).
1概述
利用浮子流量傳感器對流體的測量過程中,經(jīng)常會涉及到對黏性流體的測量,當(dāng)實際測量工作介質(zhì)的黏度與標(biāo)定介質(zhì)的黏度不同時,黏性就會影響流量測量的正確率。針對這個問題,國內(nèi)外許多學(xué)者作了大量的研究,這些研究從方法上講可分為兩大類,一類研究著眼于對現(xiàn)有的浮子流量傳感器通過實驗找出其黏性修正曲線;另一類著重于盡可能消除黏性影響的浮子傳感器結(jié)構(gòu)設(shè)計。
由于利用黏性修正曲線消除黏性影響只能在被測黏度為常數(shù)或掌握其黏度變化規(guī)律的情況下,才能對黏性影響流量示值進行修正。而在對浮子傳感器結(jié)構(gòu)優(yōu)化方面:FisherK首先提出在標(biāo)定中忽略黏性影響的設(shè)計[5],此后Miller.R.w給出一系列特殊結(jié)構(gòu)的浮子形狀,,指出這些浮子具有黏度不敏感上限值,在此黏度限制以下時,不需要進行黏度校正。但在他們的工作中并沒有指出浮子流量傳感器黏性不敏感的工作原理和適應(yīng)的黏度范圍。
本文試圖找到能夠減小流體黏性對測量影響的浮子流量傳感器結(jié)構(gòu),并分析總結(jié)減黏的機理,為優(yōu)化浮子結(jié)構(gòu)提供理論基礎(chǔ)。由于在工業(yè)中使用測量黏性溶液的浮子流量傳感器多是耐高溫耐高壓的金屬浮子流量傳感器,所以用流動顯示的實驗方法來研究浮子流量傳感器機理既不易觀察到浮子內(nèi)部流場的變化,也增加了研發(fā)的費用。鑒于此,本文采用CFX軟件對測量黏性介質(zhì)的浮子流量傳感器內(nèi)部流場進行了數(shù)值模擬,通過對仿真結(jié)果的分析,提出減小黏性對浮子流量傳感器影響方法,并最終研制出受黏度影響小的減黏浮子。
2浮子流量傳感器的基本結(jié)構(gòu)
浮子流量傳感器基本結(jié)構(gòu)如圖1所示,在垂直的錐形管中放置一阻力件,也就是浮子。當(dāng)流體自下而.上流過錐管時,由于浮子的阻塞作用使其上下表面產(chǎn).生了壓差,從而對浮子形成一個向上的作用力,如果所測流體是黏性流體,還應(yīng)該考慮浮子表面的黏性摩擦力。當(dāng)升力大于浮子本身的重力時,浮子向上運動,此時浮子與錐形管之間的環(huán)通面積增大,流速減.低,浮子對流體阻力作用減小。當(dāng)浮子受到的力達到平衡時,浮子就會停留在某一高度
3計算流體力學(xué)方法的應(yīng)用
本文計算中使用的控制方程為RANS方程,選用工程中常用的Standardk-ε模型作為流場計算的湍流模型。為了簡便,以不可壓縮湍流流動為例寫出仿真使用的k-ε模型通用形式的流體控制方程。在直角坐標(biāo)系中,流動可由如下的雷諾時均N-S方程.和連續(xù)性方程來描述。
連續(xù)方程:
其中Ui為平均速度,P為平均壓力,ʋ和ʋt,分別為分子黏性系數(shù)和渦黏性系數(shù),對高Re數(shù)湍流,渦黏性系數(shù)由下式?jīng)Q定:
別為湍動能產(chǎn)生項和平均應(yīng)變率張量。
同時為了能夠動態(tài)仿真浮子流量傳感器的測量原理,使浮子可以根據(jù)受力變化自動調(diào)整其在錐管中的位置,本文根據(jù)牛頓第二定律,得到浮子上下移動的控制方程;
其中F.為浮子表面壓力差,FV為浮子所受到的黏性力,G為浮子受到的重力,m是浮子自身的質(zhì)量,△t為計算迭代前后的時間差,△u計算迭代前后的速度差,計算中把相對速度轉(zhuǎn)化為相對位移來控制.浮子的升降,直到被計算的浮子所受到的合力到達平衡。
4流場仿真與機理分析
仿真過程中建立了浮子流量傳感器結(jié)構(gòu)模型,如圖2所示。為了提高浮子流量傳感器入口仿真效果,仿真按照尼古拉茲圓管速度剖面公式給出如圖3所示浮子流量傳感器入口速度剖面,圖中色標(biāo)由冷色調(diào)變化到暖色調(diào)表示流體速度由小到大,從偽色圖中可以看到從邊壁到中心的速度是由小到大非線性分布的。為了清楚說明浮子流量傳感器的仿真過程圖4給出測量黏性流體浮子流量傳感器仿真計算的.流程簡圖。
通過仿真,分別得到小流量和大流量入口流量條件下的傳感器速度剖面?zhèn)紊珗D,如圖5、圖6所示。圖中可以清楚看到傳感器中流體在浮子周圍以及出入口的速度分布。隨著流量的增加,浮子的位置上升,浮子與錐管之間環(huán)隙變大,流體在錐管中的速度分布也隨之發(fā)生明顯的變化,據(jù)此可以定性判斷出計算所得結(jié)果是合理的。
為了研究流體黏性摩擦力對浮子表面受力的影響,仿真計算了浮子表面受到的沿流向黏性摩擦力等值線圖,如圖7所示,圖中可以清楚的看到在浮子最大截面之前的浮子表面有淺綠色的黏性摩擦力色帶區(qū),它說明浮子的前端受到了較大沿流向的黏性力影響,而在最大截面后部的浮子表面上出現(xiàn)了深藍色的黏性力色帶,這說明此處浮子表面所受到的黏性摩擦力為負值,即黏性力作用的方向反向于流體流向,這種現(xiàn)象在一定程度上減小了黏性流體黏性力對浮子傳感器的影響。通過觀察流體在通過最大截面時的速度矢量圖,如圖8所示,可以發(fā)現(xiàn)渦旋作用是造成浮子在最大截面后部出現(xiàn)負黏區(qū)的主要原因。
根據(jù)邊界層理論,由于黏性而使物面邊界產(chǎn)生邊界層,當(dāng)黏性流體流過浮子最大截面而后突然流動‘分離”。這樣產(chǎn)生的分離層迅速形成一個或多個渦,這樣的渦可以滯留在物體后部。也就是說,流體流經(jīng)浮子與管壁之間的環(huán)隙時,環(huán)隙速度增大,流體在截面內(nèi)均勻分布,當(dāng)截面沿流動方向突然增大的時候,由于分離形成了滯留在浮子最大截面后部的渦流區(qū),從而形成逆流,使浮子整體表面所受到黏性摩擦力在流動方向上減小,甚至與浮子上升方向相反,這樣就部分抵消了黏性帶來的影響。根據(jù)以上分析,本文提出利用流體邊界層提前分離產(chǎn)生的渦旋區(qū)實現(xiàn)浮子減黏的方案,其中包括:最大截面之前的浮子表面積越小,沿流向的正黏性力作用區(qū)域越小;迎流面的邊緣越鋒利,分離點越靠前,分離造成的渦旋效果越顯著;分離所產(chǎn)生渦旋場中的浮子表面積越大,浮子受到負黏性摩擦力越大。
根據(jù)仿真研究得到的減黏規(guī)律,本文在原有基本浮子(DF_C型)形狀的基礎(chǔ)上研制了兩種具有減黏特性的浮子:ACF型和DFL型浮子,如圖9所示。
圖10與圖11給出兩種減黏浮子在仿真流場中的速度矢量圖,圖中可以清楚看到減黏浮子所產(chǎn)生的.強烈的渦旋場。
在兩種新浮子結(jié)構(gòu)中,ACF具有特別鋒利的邊緣和靠前的分離點,流體流過最大截面后,在浮子后部出現(xiàn)劇烈的旋渦,故反向于流向的黏性應(yīng)力很顯著;而DF_L雖然較ACF分離點靠后,渦旋沒有ACF型的強烈,但其處在渦流區(qū)的浮子表面積要大于ACF,(DF_L為圓柱,而ACF為圓臺),所以其在渦流區(qū)所受的反向黏性摩擦力也較大
5實驗驗證
為了檢驗減黏浮子的減黏效果,,本實驗測試了三種形狀浮子所構(gòu)成浮子流量傳感器的減黏結(jié)果,浮子形狀如圖9所示。實驗首先通過水溶液標(biāo)定各個浮子流量傳感器的浮子流向高度與流量的關(guān)系,然后使用已標(biāo)定好的浮子流量傳感器測量黏度等于的黏性溶液,由于黏性的影響,浮子流量傳感器所測量黏性溶液的流量與真實流量有一定誤差,誤差越大說明浮子流量傳感器受到黏度影響越大,反之,,說明浮子流量傳感器有減小黏性影響的特性。
實驗中不同浮子所構(gòu)成的浮子流量傳感器分別對5種高黏度甲基纖維素水溶液進行了測量,由于甲基纖維素的水溶液密度與水非常接近(常溫下為1001kg/m³),故可認為浮子流量傳感器測量甲基纖維素水溶液體積流量無需密度修正。其中溶液黏度分別為137mPa·s,495mPa·s,1215mPa·s,1692,mPa。
和1962mPa's。
經(jīng)過物理實驗得到不同類型浮子流量傳感器測量黏性溶液流量的測量誤差,如表1。
從表中可知,ACF型浮子與DF_L型浮子在測量最大黏性溶液中測量誤差分別為17.22%和13.87%;平均測量誤差分別為11.12%和7.75%;遠優(yōu)于普通DF_C型浮子的最大測量誤差20.46%和平均誤差14.67%;如果測量黏度在495mPa·s范圍的黏性溶液,,兩種浮子的測量誤差可以控制在5%以下,對于DF_L型浮子,其測量誤差只有2.82%。以上實驗數(shù)據(jù)驗證了仿真計算所得結(jié)論的正確性,即通過增加渦旋強度和增加渦旋區(qū)浮子面積對浮子流量傳感器的減黏作用。
6小結(jié)
通過研究可以得到以下結(jié)論:
(1)利用CFD方法可以有效的對測量黏性流體的浮子流量傳感器進行模擬;在對流量傳感器的機理進行定性研究中,發(fā)現(xiàn)了流體邊界層在最大截面處分離所產(chǎn)生的渦旋具有減黏效果。
(2)討論了利用渦旋場減小流體黏性影響的機理與減黏浮子結(jié)構(gòu)特征,并制造了兩種反映浮子減黏特征的浮子流量傳感器,通過物理實驗驗證了減黏浮子具有減黏的特性,減黏浮子傳感器在1-495mPa.s的黏性范圍內(nèi)測量時,介質(zhì)黏性所引起的測量誤差可控制在2.9%以內(nèi)
本文來源于網(wǎng)絡(luò),如有侵權(quán)聯(lián)系即刪除!